

Purpose	Explore alternatives to conventional gravimetric weighing for ultra high performance
Circulation	Internal

CiP White Paper: Photon-Based Gravimetry for High-Throughput Tablet Weighing: A Technical Assessment

Wednesday 27 August 2025

Author: Phillip Ruda

Executive summary

This paper evaluates whether interactions between photons and matter can be exploited to weigh oral solid dosage (OSD) units at extreme throughput (≥60,000 tablets/hour) with accuracy of ±0.1 mg across a 1 mg−2 g mass range. We analyse three photon routes — gravitational red/blue-shift, radiation pressure/momentum transfer, and photothermal (energy-absorption) calorimetry — and compare them to viable mechanical/electromechanical methods. Conclusion: photon-based gravimetry is not a practical path to the stated specification. The only credible route is parallelization of fast electromagnetic-force-restoration (EMFR) weighing cells, optionally combined with dynamic inertial/resonant techniques and model-based signal processing.

1 Problem statement

Target:

Mass measurement of individual tablets at \geq 60,000 units/hour with \pm 0.1 mg accuracy over 1 mg-2 g.

Constraint:

Methods must be suitable for pharmaceutical QC/QA (non-destructive, repeatable, calibratable, compliant).

Question:

Can photon-matter interactions (GR effects, radiation pressure, photothermal absorption) be engineered to deliver this performance?

Title	CiP White Paper: Photon-Based Gravimetry for High-Throughput Tablet Weighing: A Technical Assessment	Date	27/08/2025
Reference	CiP White Paper: Photon-Based Gravimetry for High-Throughput Tablet Weighing: A Technical Assessment	Status	Issue
Client	na	Version	V1.0
		Page	01 of 08

2 Photon-matter routes considered

2.1 General Relativity (GR) — Gravitational Redshift

Premise: Using the measure of energy loss of light to determine influencing mass.

Photons experience fractional frequency shift crossing a potential difference $\Delta\Phi$:

$$\frac{\Delta f}{f} \, \approx \, \frac{\Delta \Phi}{c^2}$$

For a small body (mass M, characteristic size R),

$$\Phi = \frac{G M}{R}$$

For a 2mg tablet with $R \approx 3$ mm:

$$R pprox 3mm$$
: $m{\phi} pprox rac{GM}{R} pprox rac{6.67 imes 10^{-11} \cdot 2 imes 10^{-6}}{3 imes 10^{-3}} pprox 4.4 imes 10^{-14} \, \text{J/kg,}$

$$\Rightarrow \quad \frac{\Delta f}{f} \sim \frac{4.4 \times 10^{-14}}{c^2} \approx 5 \times 10^{-31}$$

State-of-the-art optical clocks resolve $\sim 10^{-18}$ fractional shifts; the tablet signal is ~ 13 orders smaller. Not measurable, even ideally.

2.2 Radiation Pressure & Photon Momentum (Recoil)

Premise: Using the momentum of a photon and the measure of its transference to an object by radiation pressure causing recoil.

Photon momentum:

$$p = \frac{E}{c} = \frac{h}{\lambda}$$

Radiation pressure on a perfectly reflecting surface:

$$F = \frac{2P}{C}$$

To levitate a mass:

$$P = \frac{M g c}{2}$$

		Page	02 of 08
Client	na	Version	V1.0
Reference	CiP White Paper: Photon-Based Gravimetry for High-Throughput Tablet Weighing: A Technical Assessment	Status	Issue
Title	CiP White Paper: Photon-Based Gravimetry for High-Throughput Tablet Weighing: A Technical Assessment	Date	27/08/2025

Examples:

$$1mg \rightarrow P \approx 1.5 \, kW; \, 2g \rightarrow P \approx 3 \, MW$$

Even far below levitation, useful recoil metrology demands ultra-low-friction mounts, vacuum, interferometric velocimetry, and remains impractical for mg-g objects at line speed.

2.3 Photothermal (Energy-Absorption) Calorimetry

Premise: Measuring heat-flow and transference of energy in the form of heat to infer material properties.

Deposit known absorbed optical energy E_{abs} ; infer mass via temperature rise:

$$M = \frac{E_a b s}{\left(c_p \Delta T\right)}$$

To achieve +/- 0.1mg on a 1g tablet (1 x 10⁻⁴ relative), the combined relative uncertainties in E_{abs} , c_p and ΔT must be $\lesssim 10^{-4}$. That implies \sim 0.01% accuracy in delivery/absorbed energy and \sim 0.1 mK resolution on a \sim 1 K transient in milliseconds, with negligible heat loss and uniform absorption – conditions incompatible with typical OSD variability (porosity, coat, moisture) and QC throughput.

Material dependence (unknown/variable absorptivity and heat capacity), heat losses, non-uniform heating, and risk of product alternations make this a proxy for heat capacity x absorption rather than a universal mass measurement.

3 Quantitative feasibility checks (order of magnitude)

3.1 GR Shift vs Clock Sensitivity

Tablet:

$$\Delta f/f \sim 10^{-31}$$

Best optical lattice clocks: $\sim 10^{-18}$ uncertainty over long averaging times. Gap: $\sim 10^{13}$ too small.

3.2 Recoil / impulse method

532 nm photons ($E \approx 3.7 \times 10^{-19} J$, $p \approx 1.2 \times 10^{-27} kg \cdot m \cdot s^{-1}$). To impart $\Delta v = 1 \mu m/s$: $J = M \Delta v$; $N \approx J/p$.

Img:
$$J = 10^{-12}$$
, $N \sim 8 \times 10^{14}$ photons $\Rightarrow E \sim 0.3 J$

2g:
$$J = 2 \times 10^{-9}$$
, $N \sim 1.7 \times 10^{18} \Rightarrow E \sim 600 J$

Title	CiP White Paper: Photon-Based Gravimetry for High-Throughput Tablet Weighing: A Technical Assessment	Date	27/08/2025
Reference	CiP White Paper: Photon-Based Gravimetry for High-Throughput Tablet Weighing: A Technical Assessment	Status	Issue
Client	na	Version	V1.0
		Page	03 of 08

These energies are large for line operation, while mechanical isolation and metrology requirements are prohibitive.

3.3 Photothermal Calorimetry

Assume $E_{abs}=1$ J, $c_p\approx 1000$ J·cdotpkg $^{-1}$ · $\cdotpkg-1$, M=1 g $\Delta T=1$ K. To reach 10^{-4} relative mass accuracy: $\delta E/E$, $\delta cp/cp$, $\delta (\Delta T)/\Delta T\lesssim 10^{-4}$. This requires vacuum-like isolation, integrated reflectance/transmittance metrology per unit, standardised surfaces, and per-product calibration – incompatible with general OSD QC at 60k/h.

4 Practical barriers to photon-based gravimetry

Signal scale mismatch: Fundamental photon/gravity effects are minuscule for mg-g masses.

Environmental dominance: Earth's gravity and ambient noise swamp GR signals; air currents/electrostatics swamp recoil and photothermal transients.

Material variability: Absorptivity and heat capacity vary with formulation, moisture, and coating; you measure thermophysical properties, not pure mass.

Throughput constraints: Millisecond-scale, sub-mK calorimetry with per-unit optical energy accounting is complex and fragile; recoil methods demand vacuum and interferometry.

Validation burden: Reproducibility, calibration traceability, and non-destructive testing requirements conflict with energetic optical excitation.

5 Viable high-throughput paths (≥ 60k/h @ ±0.1mg)

5.1 Parallel Electromagnetic Force Restoration (EMFR)

- Mulitiple isolated weigh cells
- Per-lane throughput 5-8k/h with 20 to 40 ms effective settle using oversampling and model based deconvolution and active isolation (LAF, vibration isolation, static elimination)
- Continuous auto-zero and periodic in-process cal-check
- Aggregate by channel count

5.2 Impulse-Response Inertial Weighing

Apply a controlled force-time profile (voice-coil "tap"), measure tablet kinematics (laser vibrometry or high-bandwidth displacement), compute mass from $M = \int F \ dt/\Delta v \ or \ M = F/a$ with fixture dynamics identified and subtracted. Achieve **5–10 ms** per impulse; 3–5 impulses/averages per unit yield **<50 ms** decision time.

Title	CiP White Paper: Photon-Based Gravimetry for High-Throughput Tablet Weighing: A Technical Assessment	Date	27/08/2025
Reference	CiP White Paper: Photon-Based Gravimetry for High-Throughput Tablet Weighing: A Technical Assessment	Status	Issue
Client	na	Version	V1.0
		Page	04 of 08

5.3 Resonant Micro-weighing

Place the unit on a flexural resonator; infer mass from frequency shift $\Delta f/f \approx 1/2\Delta m/M_{eff}$. Use broadband excitation and parametric ID to avoid long ring-down; best for 50–500 mg ranges with controlled seating.

5.4 Hybrid "Virtual Weighing" (Screening)

Combine 3D optical volume with ultrasound or dual-energy X-ray for density proxy; train models against reference weights to reduce the burden on EMFR lanes. Good for pre-sort, not for absolute ±0.1 mg across 1 mg–2 g.

6 Reference architecture for a 60k/h line

Mechanics:

Multi-lane modular sorter; each lane has singulation, short-settle EMFR cell, accept/reject/grade diverter; lanes mechanically isolated.

Cycle timing (per lane):

Singulate 5 ms \rightarrow place 5 ms \rightarrow acquire 25 ms (oversample 20-40 kHz, denoise) \rightarrow classify 5 ms \rightarrow eject 5 ms.

Approx. 45 ms/unit to approx. 80 units/s across 10 lanes = 288 k/h headroom; de-rate to 60-100 k/h for real-world variances and environmental effects.

Controls & DSP:

Transient model fit (step response deconvolution), Bayesian averaging of multiple short windows, outlier detection, per-lot drift tracking.

Metrology:

Traceable calibration artifacts injected every N units; auto-zero every M cycles; SPC charts; GR&R live.

Environment:

Enclosure with laminar flow (<0.2 m/s), vibration isolation ($<10^{-3} \text{ g RMS}$), temperature control ($\pm 0.5 \,^{\circ}\text{C}$), static elimination.

Title	CiP White Paper: Photon-Based Gravimetry for High-Throughput Tablet Weighing: A Technical Assessment	Date	27/08/2025
Reference	CiP White Paper: Photon-Based Gravimetry for High-Throughput Tablet Weighing: A Technical Assessment	Status	Issue
Client	na	Version	V1.0
		Page	05 of 08

7 Regulatory and validation considerations

Data integrity:

21 CFR Part 11 / EU Annex 11 compliance audit trails, electronic signatures, role-based access.

Calibration and traceability

ISO/IEC 17025 traceable standards; in-process checks with control charts.

Risk management:

Non-destructive testing; thermal/optical exposure of tablets minimised; documented effect of weighing process on product CQAs.

Process:

GMP and PIC/S process compliance and best practice.

8 Conclusions

Photon-based approaches (GR, recoil, photothermal) are fundamentally mis-scaled for mg-g masses and operationally fragile for pharma QC at \geq 60 k/h and \pm 0.1 mg.

Mechanical/electromechanical routes – parallel EMFR and dynamic inertial/resonant augmentation and advanced DSP are the only credible path to the spec.

Investment – focus needs to be on modular or multi-lane architecture, short transient signal processing and robust environmental control, not exotic photon physics.

9 Appendix

9.1 GR Redshift of a 2 mg tablet

```
Given M=2\times 10^{-6} kg. R=3\times 10^{-3} m. G=6.67\times 10^{-11}; \Phi=GM/R=4.4\times 10^{-14} J/kg; \Delta f/f=\Phi/c^2\approx 4.9\times 10^{-3} .
```

9.2 Radiation pressure power to counteract weight

$$F = Mg, F = 2P/c(perfect \ reflector) \Rightarrow P = Mgc/2$$

 $M = 1 \ mg: P \approx 1.5 \ kW$
 $M = 2 \ g: P \approx 3 \ MW$

Title	CiP White Paper: Photon-Based Gravimetry for High-Throughput Tablet Weighing: A Technical Assessment	Date	27/08/2025
Reference	CiP White Paper: Photon-Based Gravimetry for High-Throughput Tablet Weighing: A Technical Assessment	Status	Issue
Client	na	Version	V1.0
		Page	06 of 08

Photohermal Mass via Calorimetry

 $M = E_{abs}/(c_p \Delta T)$ With $E_{abs} = 1$ JEabs = 1J, cp = 1000, M = 1 $g \Rightarrow \Delta T = 1$ K For $\delta M/M \leq 10^{-4}$: require $\delta(\Delta T) \leq 0.1$ mK if energy and c_p are known to 10^{-4} .

10 References (selected)

Cronin, A. D., Schmiedmayer, J., & Pritchard, D. E. Optics and interferometry with atoms and molecules. Rev. Mod. Phys. 81, 1051 (2009).

Pesce, G., et al. Optical tweezers: theory and practice. Eur. Phys. J. Plus 135, 949 (2020).

NIST. Yb Optical Lattice Clock — 1×10⁻¹⁸ uncertainty (program note).

Ludlow, A. D., et al. Optical frequency measurements at 1×10⁻¹⁸ uncertainty with Yb lattice clocks (NIST report).

Encyclopaedia Britannica. Radiation pressure; Quantum theory of light (momentum p=E/c=h/ λ).

Volkov, D. S., et al. Photoacoustic and photothermal methods in spectroscopy. J. Phys.: Conf. Ser. 1421 (2019).

Wu, X., et al. Gravity surveys using a mobile atom interferometer. Sci. Adv. 5, eaax0800 (2019).

NIST. The Kibble balance and the kilogram redefinition (EM force-based mass realization).

Pavlis, N. K., et al. Relativistic redshift in frequency standards and geodesy (NIST).

Saha, P. Essentials of strong gravitational lensing. Space Sci. Rev. (2024).

Title	CiP White Paper: Photon-Based Gravimetry for High-Throughput Tablet Weighing: A Technical Assessment	Date	27/08/2025
Reference	CiP White Paper: Photon-Based Gravimetry for High-Throughput Tablet Weighing: A Technical Assessment	Status	Issue
Client	na	Version	V1.0
		Page	07 of 08

Document Control

Author	PR
Reference	CiP White Paper: Photon-Based Gravimetry for High-Throughput Tablet Weighing: A Technical Assessment

10.1 Amendments

Issue Number	Date	Details	Sections
0.1	27Aug2025	First draft	All
1.0	08Sep2025	Issue	All

10.2 Copyright Notice

This document is copyright © 2025 CI Precision. No part of this document may be copied, transmitted, or disclosed to third parties without the express written permission of CI Precision. CI Precision is the trading name of both CI Electronics Ltd and CI Systems Ltd.

Title	CiP White Paper: Photon-Based Gravimetry for High-Throughput Tablet Weighing: A Technical Assessment	Date	27/08/2025
Reference	CiP White Paper: Photon-Based Gravimetry for High-Throughput Tablet Weighing: A Technical Assessment	Status	Issue
Client	na	Version	V1.0
		Page	08 of 08